Ken Furudate
import scanpy as sc
import anndata as ad
import squidpy as sq
import numpy as np
import pandas as pd
import matplotlib as mpl
from matplotlib import pyplot as plt
%matplotlib inline
import matplotlib.font_manager
plt.rcParams['font.sans-serif'] = ['Arial'] + plt.rcParams['font.sans-serif']
plt.rcParams["font.size"] = 20
import os
import seaborn as sns
from pathlib import Path
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:80% !important; }</style>"))
import warnings
warnings.filterwarnings('ignore')
sc.logging.print_header()
print(f"squidpy=={sq.__version__}")
datadir="/data/spatial/"
in_f = "integrated_data.h5ad"
data = sc.read_h5ad(datadir + in_f)
set(data.obs['sample'])
adata = data[data.obs['sample']=="A"]
bdata = data[data.obs['sample']=="B"]
cdata = data[data.obs['sample']=="C"]
ddata = data[data.obs['sample']=="D"]
data_lst = (adata, bdata, cdata, ddata)
interested_genes = [
# Exhausted T cell marker
"NR4A2", "TOX", "BACH2",
# Cytotoxic T cell marker
"CD8A", "CD28"
]
vmax_ = [1.6, 0.8, 0.1, 0.4, 0.1]
idx = 3
sc.pl.spatial(adata=data_lst[idx],
color=interested_genes,
color_map="viridis",
vmax=vmax_,
ncols=3,
na_in_legend=False,
)
interested_genes = [
# Regulatory T cell marker
"CD4", "FOXP3", "IL2RA",
# M2 like TAM markers
"CD163", "MSR1", "MRC1"
]
vmax_ = [0.7, 0.1, 0.2, 0.7, 0.2, 0.2]
idx = 3
sc.pl.spatial(adata=data_lst[idx],
color=interested_genes,
color_map="viridis",
vmax=vmax_,
ncols=3,
na_in_legend=False,
)