Ken Furudate
import scanpy as sc
import stlearn as st
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline
import matplotlib.font_manager
plt.rcParams['font.family'] = 'Arial'
plt.rcParams["font.size"] = 20
import os
from pathlib import Path
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:80% !important; }</style>"))
import warnings
warnings.filterwarnings('ignore')
print(f"scanpy=={sc.__version__}")
print(f"stlearn=={st.__version__}")
datadir="/data/spatial/"
sample_name1="A"
sample_name2="B"
sample_name3="C"
sample_name4="D"
in_f1 = "SampleA_cluster_patho.annot_region.txt"
in_f2 = "SampleB_cluster_patho.annot_region.txt"
in_f3 = "SampleC_cluster_patho.annot_region.txt"
in_f4 = "SampleD_cluster_patho.annot_region.txt"
adata = st.Read10X(datadir + f"{sample_name1}/")
adata.var_names_make_unique()
adata.var_names
bdata = st.Read10X(datadir + f"{sample_name2}/")
bdata.var_names_make_unique()
bdata.var_names
cdata = st.Read10X(datadir + f"{sample_name3}/")
cdata.var_names_make_unique()
cdata.var_names
ddata = st.Read10X(datadir + f"{sample_name4}/")
ddata.var_names_make_unique()
ddata.var_names
a_annot = pd.read_table(os.path.join(datadir, "patho_annot", in_f1), index_col="Barcode")
b_annot = pd.read_table(os.path.join(datadir, "patho_annot", in_f2), index_col="Barcode")
c_annot = pd.read_table(os.path.join(datadir, "patho_annot", in_f3), index_col="Barcode")
d_annot = pd.read_table(os.path.join(datadir, "patho_annot", in_f4), index_col="Barcode")
adata.obs['pathology'] = a_annot["patho_diag"]
adata.obs['category'] = a_annot["category"]
adata.obs['cluster'] = a_annot["graph-based"]
bdata.obs['pathology'] = b_annot["patho_diag"]
bdata.obs['category'] = b_annot["category"]
bdata.obs['cluster'] = b_annot["graph-based"]
cdata.obs['pathology'] = c_annot["patho_diag"]
cdata.obs['category'] = c_annot["category"]
cdata.obs['cluster'] = c_annot["graph-based"]
ddata.obs['pathology'] = d_annot["patho_diag"]
ddata.obs['category'] = d_annot["category"]
ddata.obs['cluster'] = d_annot["graph-based"]
sc.pl.spatial(adata=adata,
color=['cluster', 'pathology', 'category'],
title=['Unsupervised cluster', 'Pathological annotation', 'Region'],
na_in_legend=False,
)
sc.pl.spatial(adata=bdata,
color=['cluster', 'pathology', 'category'],
title=['Unsupervised cluster', 'Pathological annotation', 'Region'],
na_in_legend=False,
)
sc.pl.spatial(adata=cdata,
color=['cluster', 'pathology', 'category'],
title=['Unsupervised cluster', 'Pathological annotation', 'Region'],
na_in_legend=False,
)
sc.pl.spatial(adata=ddata,
color=['cluster', 'pathology', 'category'],
title=['Unsupervised cluster', 'Pathological annotation', 'Region'],
na_in_legend=False,
)